

Bodendrallauslass DB-E.... für Komforträume

Luftführungssysteme

Konstruktiver Aufbau

Vorbemerkungen

Luftdurchlässe von Krantz Komponenten für den Einsatz in Doppelbodensystemen arbeiten nach dem Prinzip der "Luftführung von unten nach oben" und führen die Zuluft zugfrei in den Raum ein. Wärme, Luftverunreinigungen und Geruchsstoffe werden aus dem Aufenthaltsbereich in den Deckenraum verdrängt und mit der Abluft abgeführt. Der Austausch der Raumluft durch aufbereitete Zuluft ist sehr intensiv und die erzielte Luftqualität im Aufenthaltsbereich außerordentlich gut.

Konstruktiver Aufbau

Hauptbestandteil des Bodendrallauslasses ist das Luftdurchlasselement 1 mit radial angeordneten Luftschlitzen 1a. Der Bodendrallauslass DB-E wird in herkömmliche Doppelbodensysteme eingesetzt. Ändert sich die Raumaufteilung, so sind die Bodenplatten mit bzw. ohne Luftdurchlässe leicht untereinander austauschbar. Dadurch lässt sich die Luftzufuhr, je nach Erfordernis, örtlich verstärken oder vermindern. Der Anschluss erfolgt auf zwei Arten (Bild 1):

System Druckraum: Die Zuluft wird dem Luftdurchlass von unten zugeführt. Dabei wirkt der Raum unterhalb des Doppelbodens als Luftverteilkammer.

System Rohranschluss: Der Bodendrallauslass wird über einen rechteckigen Anschlusskasten mit flexibler Rohrleitung an das Kanalsystem angeschlossen.

Doppelboden: System "Druckraum" Doppelboden: System "Rohranschluss"

Möglichkeiten für die Zulufteinspeisung

direkt aus dem Druckraum

über flexible Rohrleitung und Anschlusskasten unten:

Für die Luftdurchlassmontage stehen bewährte Lösungen zur Verfügung:

- 1. Einlegen in die Stufenbohrung in der Bodenplatte.
- 2. Einbau mit Spanneinsatz in eine Durchgangsbohrung in der Bodenplatte.

Der Spanneinsatz hat an der Oberseite einen Schutzring zur Einfassung des Plattenausschnittes rund um den Luftdurchlass. Diese Lösung ist vorteilhaft für Doppelböden mit Teppichbelag. Dabei kann der Spanneinsatz mit der Bodenplatte fest verbunden werden, und zwar mit Spannmutter 5a, Spreizkralle 5b oder Klemmring 5d. Darüber hinaus ist das Drallelement der Baugröße DN 200 gegen unbefugtes Herausnehmen verriegelbar 1).

Der Bodendrallauslass wird mit einem Verteilkorb 2 für gleichmäßige Luftanströmung geliefert. Es kann zwischen verschiedenen Ausführungen gewählt werden (Bild 2):

- "Standardausführung", mit Drosseleinrichtung: VSD (ohne Drosseleinrichtung: VS)
- "Kurze Ausführung", für Doppelböden mit kleineren Druckraumhöhen; ohne Drosseleinrichtung: VK
- "Niedrige Ausführung", Korbboden öffenbar. Dadurch zusätzliche Lufteinströmung von unten, vorzugsweise für Doppelböden mit dickeren Platten und kleineren Druckraumhöhen, mit Drosseleinrichtung: VND (ohne Drosseleinrichtung: VN)
- "Perforierte Blechausführung" für Bodenluftdurchlässe aus Aluminium, mit Drosseleinrichtung: VPD
- "Lochblechausführung", mit Festdrossel für gleichmäßige Zuluftverteilung bei Einsatz DN 200 in Versammlungsräumen bzw. bei kleinen Luftdurchlass-Volumenströmen: VL

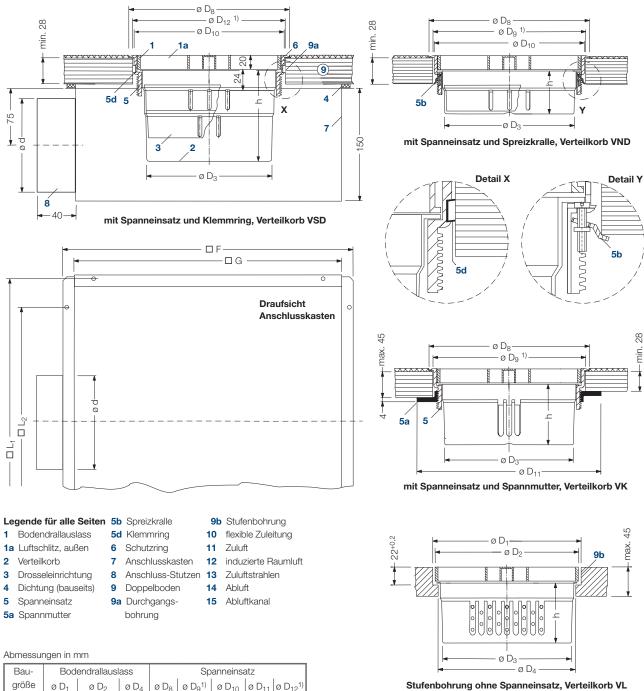


Bild 2: Verteilkörbe in unterschiedlicher Ausführung

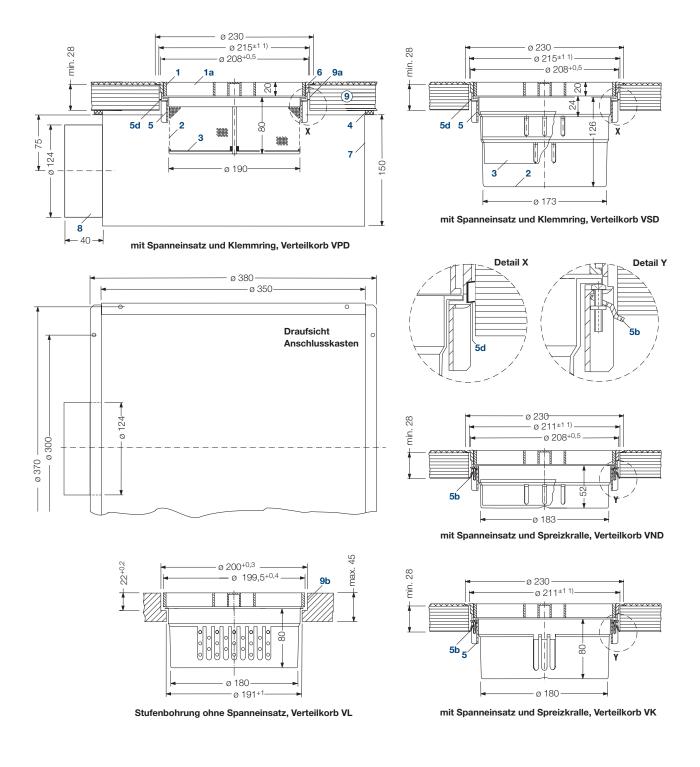
¹⁾ Hinsichtlich der gewünschten Luftdurchlassausführung (Art, Baugröße, Werkstoff) bzw. der möglichen Kombinationen der einzelnen Teile siehe Tabelle Seite 11 "Lieferbare Ausführungen"

Bodendrallauslass aus Kunststoff

Abmessungen

Bau-	Bode	endrallausl	ass	Spanneinsatz					
größe	ø D ₁	ø D ₂	ø D ₄	ø D ₈	ø D ₉ 1)	ø D ₁₀	ø D ₁₁	ø D ₁₂ 1)	
DN 150	150 ^{+0,2}	149,5 ^{+0,4}	141 ⁺¹	172	161±1	158 ^{+0,5}	205	165±1	
DN 200	200+0,3	199,5+0,4	191 ⁺¹	230	211±1	208+0,5	255	215 ^{±1}	

Bau-		Verteilkorb						
größe	VS,	VSD	VK		VN, VND		VL	
	ø D ₃	h	ø D ₃	h	ø D ₃	h	ø D ₃	h
DN 150	131	105	135	54	_	_	_	_
DN 200	173	126	180	80	183	52	180	80


Bau-	Anschlusskasten					
größe	ød	F	G	L ₁	L ₂	
DN 150	79	280	250	270	200	
DN 200	124	380	350	370	300	

Bemerkung: Die Zuordnung der verschiedenen Verteilkörbe zu den jeweiligen Einbausituationen ist beliebig wählbar. Ebenso kann Anschlusskasten 7 für die Luftdurchlassanordnung der übrigen Darstellungen eingesetzt werden.

 $^{^{1)}}$ ø D_9 = ø-Durchgangsbohrung für Spanneinsatz mit Spannmutter oder Spreizkralle; ø D_{12} = desgl. für Klemmring

Bodendrallauslass aus Aluminium


Abmessungen

Bemerkung: Die Zuordnung der verschiedenen Verteilkörbe zu den jeweiligen Einbausituationen ist beliebig wählbar. Ebenso kann Anschlusskasten **7** für die Luftdurchlassanordnung der übrigen Darstellungen eingesetzt werden.

 $^{^{1)}}$ ø 211 $^{\pm1}$ = ø-Durchgangsbohrung für Spanneinsatz mit Spreizkralle; ø 215 $^{\pm1}$ = desgl. für Klemmring

Lufttechnische Funktion, Technische Daten

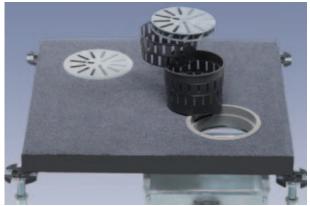


Bild 3: Bodendrallauslass DB-E-DN 150 mit Verteilkorb VSD; Beispiel für den Einbau in Bodenplatten:

oben: mit Stufenbohrung,

unten: mit Spanneinsatz und Anschlusskasten

Lufttechnische Funktion

Die Zuluft strömt in den Verteilkorb und anschließend durch die radialen Luftschlitze in den Raum.

Auf Grund der Vielzahl der Luftdurchlass-Schlitze entstehen verdrallte, hochturbulente Einzel-Luftstrahlen mit intensiver Induktionswirkung (Bild 4). Diese bewirkt einen raschen Geschwindigkeitsabbau und eine schnelle Angleichung der Zulufttemperatur an die Raumlufttemperatur.

Die Zulufteinführung von unten erzeugt eine Aufwärtsströmung, die mit dem thermischen Auftrieb, verursacht durch die Wärmelasten des Raumes, gleichgerichtet ist. Durch diese Aufwärtsströmung wird die erwärmte und verbrauchte Raumluft zur Decke

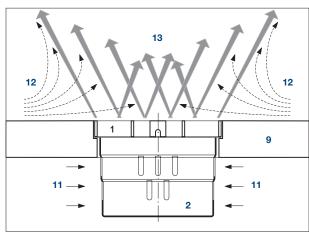


Bild 4: Funktionsprinzip des Bodendrallauslasses

gefördert und abgeführt, während im Aufenthaltsbereich stets der gewünschte Raumluftzustand vorhanden ist. Daraus resultiert eine hervorragende Luftqualität bzw. hohe Lüftungseffektivität.

Der empfohlene Mindestabstand zum nächsten Sitzplatz beträgt für Baugröße DN 150 \Rightarrow 1 m und für DN 200 \Rightarrow 1 bis 1,5 m.

Bild 5: Strahlcharakteristik Bodendrallauslass durch Rauchprobe sichtbar

Technische Daten

Nenndurchmesser		DN 150	DN	200
Luft-Volumenstrom	m ³ /h	20 – 50	50 -	180
Bei überwiegend Personenaufenthalt max.	m³/h	45	15	50
Max. Temperatur- differenz Zuluft-Abluft	K	±	10	
Zulufttemperatur	°C	18 -	- 30	
max. Tragfähigkeit 1)	kN	7,5	12	5,6
Drallelement aus		PC	Al	PC
Für Platten-Größe		Bodendrallausläs	se je Plat	te, max.
500 mm x 500 mm	Stück	2		1
600 mm x 600 mm	Stück	4		1
Min. Luftdurchlass- Mittenabstand	m	ca. 0,3	ca.	0,6
Min. Abstand Sitzplatz- Luftdurchlass	m	ca. 1	ca.	1,5

¹⁾ Konstruktionsklasse nach DIN EN 13264 "schwer", Punktlasteinwirkung zentral mit Stahlwürfel, Kantenlänge 25 x 25 mm mit Eckradius 2 mm

Temperaturangleichung

Strahltemperatur und Strahlgeschwindigkeit

Die Erzeugung hochinduktiver Zuluftstrahlen mit raschem Geschwindigkeitsabbau und schneller Angleichung der Strahltemperatur an die Raumlufttemperatur trägt wesentlich dazu bei, Zugerscheinungen zu vermeiden. Es ist bekannt, dass Luftdurchlässe von Krantz Komponenten die besten Voraussetzungen zur Erfüllung dieser Forderung besitzen. Bei der Luftzufuhr von unten werden daher mit **Bodendrallauslässen** hinsichtlich Zugfreiheit hervorragende Ergebnisse erzielt.

Die folgenden Darstellungen zeigen beispielsweise die Strahltemperaturen in verschiedenen Messebenen über den Bodendrallauslässen und dokumentieren die rasche Reduzierung der Temperaturdifferenz zwischen Zuluft und Raumluft. Der Verlauf der Strahlgeschwindigkeit ist auf Seite 7 und 8 dargestellt.

Den Messungen der Strahltemperatur liegen zugrunde: Zulufttemperatur = 19 °C (vor dem Austritt) Raumtemperatur = 24 °C (in 1,2 m Höhe)

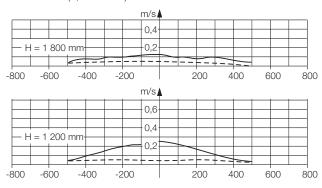
Luftdurchlass-Volumenstrom - **DN 150:** 30 und 40 m³/h - **DN 200:** 120 und 150 m³/h

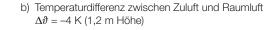
Baugröße DN 150

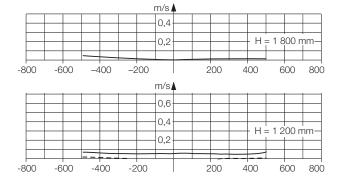
		. °C	°C	Lufttemp °C	oeratur °C	°C	°C	°C	Volumen- strom
١.	1 000	24,3	24,3	24,2	24,4	24,5	24,3	24,4	40 m ³ /h
1	1 800⊣	24,4	24,2	24,3	24,1	24,3	24,5	24,3	30 m ³ /h
iber dem Luftdurchlass	1 200⊣	- - - - -							
he i		: 23,1	23,0	23,2	23,6	23,8	23,7	24,0	40 m³/h
불	1 200⊣	23,3	23,2	23,1	23,3	23,5	23,8	24,0	30 m ³ /h
	500→	21,6	21,9	22,3	23,3	24,0	24,1	24,1	40 m ³ /h
		21,8	22,0	21,9	22,7	23,8	24,0	24,1	30 m ³ /h
		10	00 20	00 30)O 40	00 50	00 60	00	
!	L	U		Abstanc					
			. <u>Luft</u> c	durchlas	sachse i	n mm		· · -	L

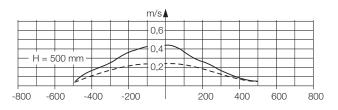
Baugröße DN 200

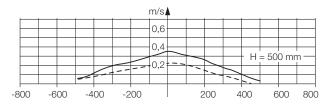
			Lufttern	peratur				Volumen-
	°C	°C	°C	°C	°C	°C	°C	strom
800-	24,5	24,6	124,6	24,7	24,5	24,3	24,3	150 m ³ /h
000	24,2	24,2	24,4	24,3	24,4	24,4	24,4	120 m ³ /h
200-	23,4	23,3	23,1	23,1	23,4	23,3	24,6	 150 m ³ /h
200	T23,7	23,2	23,4	23,4	23,5	23,7	23,9	120 m ³ /h
500-	22,4	22,2	22,9 22,9	23,7	24,1 24,2	24,0	24,2	150 m ³ /h
	 	00 2				500 6	600	
			Absta	nd von	der			

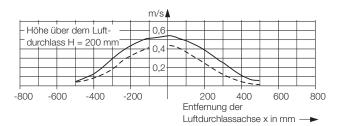

Bild 6: Bodendrallauslass in einem Büroraum

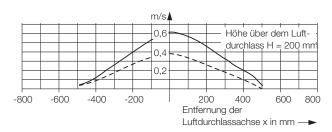

Strahlgeschwindigkeit für Baugröße DN 150

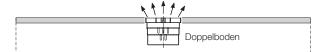

1. Zeitlicher Mittelwert für DN 150

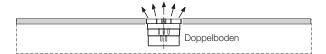

Luftdurchlass-Volumenstrom = 40 m³/h; ---- = 30 m³/h


a) Temperaturdifferenz zwischen Zuluft und Raumluft $\Delta \vartheta = -2$ K (1,2 m Höhe)









Bemerkung:

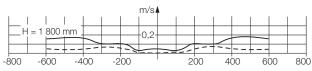
In den Diagrammen (Seite 7 und 8) sind die Strahlgeschwindigkeiten in verschiedenen Messebenen über dem Bodendrallauslass DN 150 und DN 200 dargestellt. Die Strahlgeschwindigkeiten sind jeweils für einen größeren und kleineren Volumenstrom, bzw. eine größere und kleinere Temperaturdifferenz zwischen Zuluft und Raumluft aufgezeichnet. Die theoretische Austrittsgeschwindigkeit beträgt für den größeren Volumenstrom bei DN 150 ⇒ 3,4 m/s und bei DN 200 ⇒ 4,1 m/s.

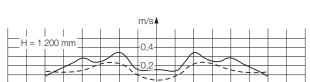
Die Strahlgeschwindigkeit – für den jeweils größeren Volumenstrom – hat sich für Baugröße DN 150 bei 500 mm Höhe bereits auf etwa 0,45 m/s und für Baugröße DN 200 bei 500 mm Höhe auf etwa 0,8 m/s reduziert. Bei 1 800 mm Höhe ist die Strahlgeschwindigkeit \leq 0,2 m/s.

Strahlgeschwindigkeit für Baugröße DN 200

2. Zeitlicher Mittelwert für DN 200

Luftdurchlass-Volumenstrom $----= 150 \text{ m}^3/\text{h};$ $----= 120 \text{ m}^3/\text{h}$

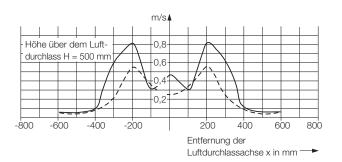

a) Temperaturdifferenz zwischen Zuluft und Raumluft $\Delta \vartheta =$ 0 K (1,2 m Höhe)

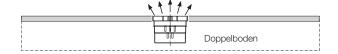

-400

-800

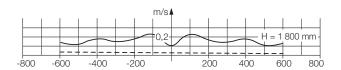
-600

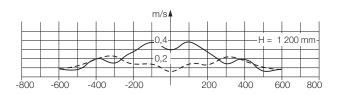
-200

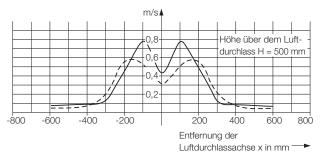


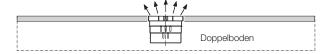


200

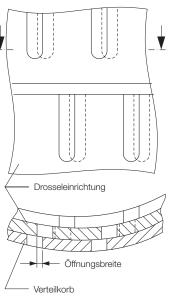

400


600

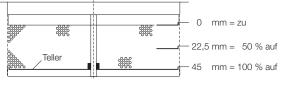




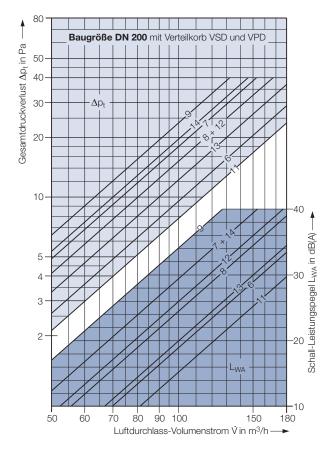
b) Temperaturdifferenz zwischen Zuluft und Raumluft $\Delta \vartheta = -5~{\rm K}$ (1,2 m Höhe)


links: in Stufenbohrung

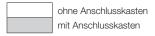
rechts: mit Spanneinsatz in Durchgangsbohrung


200

Baugröße DN 150 mit Verteilkorb VSD



Verstellung der Drosseleinrichtung im Verteilkorb VSD


Verstellung der Drosseleinrichtung (Teller) im Verteilkorb VPD

Legende zu den Kurven

			Verteilkorb	
Nr.	Bau- größe	Тур	Drosselein- richtung ²⁾ % auf	Öffnungs- breite / Tellerhub mm
1			100	5,0
2	DN 150	VSD	50	2,5
3	DIN 150	VOD	100	5,0
4			50	2,5
6			100	8,0
7	DN 200	VSD	50	4,0
8	DIN 200		100	8,0
9			50	4,0
11			100	45,0
12	DN 200	VPD	50	22,5
13	DIN 200	V V V	100	45,0
14			50	22,5
16	DN 200	VL	ohne Drosse	eleinrichtung

- 1) Angegeben sind Schall-Leistungspegel und Druckverlust bei Verwendung der Verteilkörbe VSD, VPD und VL. Bei Einsatz der Verteilkörbe VK und VND sind die Werte annähernd gleich Verteilkorb VSD.
- $^{2)}\,$ Die Drosseleinrichtung im Verteilkorb VSD ermöglicht stetige $\dot{\text{V}}\text{-}\text{Reduzierung,}$ vorzugsweise bis 50 % sowie Vollabsperrung.

Hinweise für die Auslegung

Schall-Leistungspegel und Gesamtdruckverlust

Nr.	Luft- durch- lass- Volumen- strom	Gesamt- druck- verlust	,	Schal	I-Leis	tungs	pegel	L _W in	dB	
	V̈́Α	Δpt	L _{WA}		Okta	vmitte	enfreq	uenz	in Hz	
	m ³ /h	Pa	dB(A)	63	125	250	500	1 K	2 K	4 K
DN 15	0 mit Vertei	ilkorb VSD								
	30	9	6	22	12	_	_	_	_	_
1	40	18	14	30	20	17	11	_	_	_
	45 50	20 24	17 20	33 36	23 26	20	14 17	12	_	_
									_	
	30 40	18 35	27 35	20 28	18 26	20 28	18 26	27 35	12	
2	45	43	38	31	29	31	29	38	15	_
	50	52	42	35	33	35	33	42	19	_
	30	12	12	23	18	17	_	_	_	_
3	40	20	20	31	26	25	17	12	_	_
	45	25	23	34	29	28	20	15	_	_
	50	32	26	37	32	31	23	18	_	_
	30 40	16 28	25 33	23	21	25 33	20	23	13	_
4	45	35	36	34	32	36	31	34	16	_
	50	44	39	37	35	39	34	37	19	_
DN 20	00 mit Vertei	ilkorb VSD								
	90	8	16	27	20	19	14	10	_	_
6	120	14	24	35	28	27	22	18	10	_
"	150	20	29	40	33	32	27	23	15	_
	180	30	34	45	38	37	32	28	20	11
	90	15	27	32	26	28	24	23	16	-
7	120 150	25 38	34 39	39 44	33 38	35 40	31 36	30	23	13
								35	28	18
	90 120	12 21	22 29	22 29	26 33	25 32	19 26	17 24	15	
8	150	33	35	35	39	38	32	30	21	11
	180	45	39	39	43	42	36	34	25	15
9	90	19	32	22	28	32	27	30	19	10
9	120	34	39	29	35	39	34	37	26	17

Nr.	Luft- durch- lass- Volumen- strom	Gesamt- druck- verlust	:	Schal	I-Leis	tungs	pegel	L _W ir	ı dB	
	V̈́Α	Δp_t	L _{WA}		Okta	vmitte	enfreq	uenz	in Hz	
	m ³ /h	Pa	dB(A)	63	125	250	500	1 K	2 K	4 K
DN 20	00 mit Verte	ilkorb VPD								
	90	6	13	22	19	17	10	_	_	_
11	120	11	20	29	26	24	17	15	-	—
	150	17	25	34	31	29	22	20	10	_
	180	23	30	39	36	34	27	25	15	_
	90	12	23	27	20	19	17	19	18	_
12	120	21	30	34	27	26	24	26	25	13
12	150	33	36	40	33	32	30	32	31	19
	180	45	41	45	38	37	35	37	36	24
	90	10	17	18	20	20	15	13	_	_
13	120	17	25	26	28	28	23	21	12	_
	150	26	30	31	33	33	28	26	17	_
	180	47	34	35	37	37	32	30	21	_
	90	16	27	22	26	24	21	23	21	11
14	120	27	34	29	33	31	28	30	28	18
	150	42	39	34	38	36	33	35	33	23
DN 20	00 mit Verte	ilkorb VL								
	30	13	10	8	9	6	8	6	_	_
16	35	17	14	12	13	10	12	10	5	-
	40	22	18	16	17	14	16	14	9	_

	Durchgangsdämpfung in dB									
Bau-		Oktavmittenfrequenz in Hz Mittel-								
größe	125	250	500	1 K	2 K	4 K	8 K	wert		
DN 150	19	14	9	7	6	6	3	9		
DN 200	16	11	7	3	4	3	0	6		
DN 150	17	15	11	7	7	5	2	9		
DN 200	14	11	8	3	2	4	2	6		

ohne Anschlusskasten mit Anschlusskasten

Hinweise für die Auslegung

Baugröße DN 150

In Einsatzfällen mit sehr hohen Komfortansprüchen hat sich der Bodendrallauslass der Baugröße DN 150 bestens bewährt. Das gilt sowohl für die Verwendung in Büroräumen mit etwa gleichmäßigem spezifischen Wärmeaufkommen als auch für Räume mit örtlich unterschiedlicher Wärmebelastung durch Arbeitsmaschinen, wie z. B. in EDV-Räumen oder Schaltwarten.

Es wird empfohlen, den Luftdurchlass-Volumenstrom im Maschinenbereich mit ca. 45 m³/h und im Aufenthaltsbereich der Personen mit max. 35 m³/h zu wählen. Der Luftdurchlassabstand von Arbeitsplätzen mit dauernder Anwesenheit von Personen soll mindestens 1 m sein.

Für die gezielte Wärmeabfuhr im Maschinenbereich ist eine dichtere Luftdurchlassanordnung zweckmäßig. Hier ist der Einsatz der Baugröße DN 150 vorteilhaft, da die Bodenplatten je nach Abmessung bis zu vier Luftdurchlässe aufnehmen können. Die Baugröße DN 150 ermöglicht also eine genaue Anpassung des Zuluft-Volumenstromes an das örtlich unterschiedliche Wärmeaufkommen der Maschinen.

Lieferbare Ausführungen und Merkmale

Baugröße DN 200

Die Wahl von Luftdurchlässen mit größerem Volumenstrom bringt folgende Vorteile:

- geringe Luftdurchlassanzahl,
- wenige Öffnungen im Doppelboden,
- wenige Rohrzuleitungen bei direktem Kanalanschluss,
- niedrige Investitionskosten.

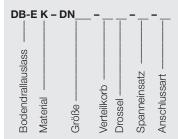
In solchen Fällen hat sich die Verwendung der Baugröße DN 200 bewährt. Der Volumenstrom ist viermal größer als bei Baugröße DN 150. Er beträgt max. 180 m³/h, im Personen-Aufenthaltsbereich max. 150 m³/h.

Aufgrund des großen (örtlichen) Volumenstromes entstehen im unmittelbaren Luftdurchlassbereich im Vergleich zur Baugröße DN 150 höhere Strahlgeschwindigkeiten. Ein kürzerer Aufenthalt über dem Luftdurchlass ist allerdings nicht störend.

Lieferbare Ausführungen

Bauteil				Baug	größe		
Dauteii	D	N 15	0	DN 200			
			1	Werk	stoff ¹)	
		PC	Al	St	PC	Al	St
Drallelement		•			•	•	
Für Einbau in Durchgangsbohrur Spanneinsatz	ng:						
- mit Klemmring	SR	2)			• 3)	• 4)	
- mit Spreizkralle	SK	•			• 3)	• 4)	
- mit Spannmutter	SM	•			• 3)		
Für Einbau in Durchgangs- und Stufenbohrung Verteilkorb							
 Standardausführung 	VS	•			•		
mit Drosseleinrichtung	VSD	•			•		
- Kurze Ausführung	VK	•			•		
Niedrige Ausführung mit Drosseleinrichtung	VN VND				•		
Perforierte Blechausführung mit Drosseleinrichtung	VPD						• 5)
 Lochblechausführung 	VL				•		
Anschlusskasten				•			•

- = lieferbar
- 1) PC = Polycarbonat; Al = Aluminium; St = Stahl, verzinkt;
- 2) Auf Anfrage
- 3) Verriegelung standardmäßig
- 4) Verriegelung optional
- 5) nur mit Al-Ausführung kombinierbar


Merkmale

- Für turbulente Mischlüftung im Komfortbereich bei Luftzufuhr aus dem Boden
- Einbau in herkömmliche Doppelbodensysteme
- · Zuluftzufuhr direkt aus dem Druckraum oder über Anschlusskasten mit flexiblem Rohr
- Hochinduktiver, rotationssymmetrischer, stabiler Vertikalstrahl
- Zuluftströmung in Richtung Thermik, vom Boden zur Decke
- Intensive Vermischung der Zuluft mit der Raumluft
- Hohe Lüftungseffektivität
- Max. Temperaturdifferenz Zuluft-Abluft ±10 K
- Zulufttemperatur 18 30 °C
- Niedriger Schall-Leistungspegel
- Min. Abstand zwischen Luftdurchlass und Sitzplatz ca. 1 m bis 1.5 m
- Luft-Volumenstrom 20 50 m³/h für DN 150 und 50 - 180 m³/h für DN 200
- In den Baugrößen DN 150 und DN 200 lieferbar
- Bodeneinbau durch Einlegen in eine Stufenbohrung oder Einbau mit Spanneinsatz in Durchgangsbohrung der Bodenplatte
- Befestigung des Spanneinsatzes an der Bodenplatte wahlweise mit Klemmring oder Spreizkralle, zusätzlich mit Spannmutter bei Kunststoffausführung
- Drallelement und Spanneinsatz DN 200 aus Polycarbonat oder Aluminium, Anschlusskasten aus verzinktem Stahlblech
- Drallelement DN 200 bei Spanneinsatz aus Polycarbonat ist standardmäßig gegen unbefugtes Herausnehmen gesichert (Verriegelung), aus Aluminium optional
- Verschiedene Verteilkörbe aus Polycarbonat und Stahl, mit oder ohne Drosseleinrichtung
- Verteilkorb "Lochblechausführung" mit Festdrossel für kleine Volumenströme zum Einsatz in Versammlungsräumen
- · Begehbar, befahrbar, rollstuhlfest

Bodendrallauslass aus Kunststoff

Ausschreibungstext

Typenbezeichnung

Material

K = Kunststoff

Größe

150 = DN 150 200 = DN 200

Verteilkorb

VS = "Standardausführung" VK = "Kurze Ausführung" VL ²⁾ = "Lochblechausführung" VN ²⁾ = "Niedrige Ausführung"

Drosse

O = ohne Volumenstrom-Drossel
D = mit Drosseleinrichtung

Spanneinsatz

SO = ohne Spanneinsatz

SR ³⁾ = Klemmring SK = Spreizkralle

SM = Spannmutter

Anschlussart

P = Druckboden K = Anschlusskasten

Ausschreibungstext

...... Stück

Luftdurchlass für Fußboden-Einbau mit hoher Induktionswirkung in Bodennähe. Dadurch schneller Abbau der Luftaustrittsgeschwindigkeit und intensiver Energieaustausch mit der Raumluft

bestehend aus:

- Drallkörper mit Radialschlitzen für die Drallerzeugung
- wahlweise mit Verteilkorb
 - "Standardausführung" mit umlaufenden Schlitzen im Korbmantel, optional mit Drosseleinrichtung zur beliebigen Verminderung des Zuluft-Volumenstromes für den Einzelluftdurchlass.
 - "Kurze Ausführung" mit umlaufenden Schlitzen im Korbmantel, vorzugsweise für Doppelböden mit kleiner Aufbauhöhe, ohne Drosseleinrichtung.
 - "Niedrige Ausführung" Ži mit umlaufenden Schlitzen im Korbmantel und öffenbarem Boden, vorzugsweise für Doppelböden mit dickeren Platten und kleinerer Druckraumhöhe, optional mit Drosseleinrichtung zur beliebigen Verminderung des Zuluft-Volumenstromes für den Einzelluftdurchlass.
 - "Lochblechausführung" ²⁾ mit Festdrossel für gleichmäßige Zuluftverteilung bei Einsatz in Versammlungsräumen bzw. kleinen Luftdurchlass-Volumenströmen.
- optional mit Spanneinsatz für den Einbau in die Durchgangsbohrung einer Bodenplatte, wahlweise mit Klemmring ³⁾, Spreizkralle oder Spannmutter (ohne Spanneinsatz zum Einbau in Stufenbohrung).
- Drallelement bei DN 200 gegen unbefugtes Herausnehmen verriegelt
- optional mit Anschlusskasten für den direkten Anschluss der Luftdurchlasseinheit an eine flexible Rohrleitung (ohne Anschlusskasten für Druckboden).

Luftdurchlass begehbar, befahrbar, rollstuhlfest.

Werkstoff:

- Drallelement aus Polycarbonat, eingefärbt staubgrau ähnlich RAL 7037 ¹⁾
- Spanneinsatz aus Polycarbonat, eingefärbt staubgrau ähnlich RAL 7037 ¹⁾
- Verteilkörbe VSD, VK und VND aus Polycarbonat, eingefärbt ähnlich RAL 9005, tiefschwarz
- Verteilkorb VPD aus Stahlblech
- Verteilkorb VL aus Polycarbonat, eingefärbt ähnlich RAL 9005, tiefschwarz, Drossel aus Stahlblech
- Anschlusskasten aus verzinktem Stahlblech

Fabrikat:	Krantz Komponenter
Typ:	DB-E K – DN – – –

Technische Änderungen vorbehalten.

3) für DN 150 auf Anfrage

¹⁾ andere Farben auf Anfrage

²⁾ für DN 200 lieferbar

Bodendrallauslass aus Aluminium

Ausschreibungstext

Bodendrallauslass Material Größe Größe Orossel Spanneinsatz Anschlussart Anschl

Material

A = Aluminium

Größe

200 = DN 200

Verteilkorb

VS = "Standardausführung"
VK = "Kurze Ausführung"
VL = "Lochblechausführung"
VN = "Niedrige Ausführung"
VP = "Perforierte Blechausführung

Drossel

O = ohne Volumenstrom-Drossel D = mit Drosseleinrichtung

Spanneinsatz

SO = ohne Spanneinsatz SR = Klemmring SK = Spreizkralle

Anschlussart

P = Druckboden K = Anschlusskasten

Ausschreibungstext

...... Stück

Luftdurchlass für Fußboden-Einbau mit hoher Induktionswirkung in Bodennähe. Dadurch schneller Abbau der Luftaustrittsgeschwindigkeit und intensiver Energieaustausch mit der Raumluft,

bestehend aus:

- Drallkörper mit Radialschlitzen für die Drallerzeugung,
- wahlweise mit Verteilkorb
 - "Standardausführung" mit umlaufenden Schlitzen im Korbmantel, optional mit Drosseleinrichtung zur beliebigen Verminderung des Zuluft-Volumenstromes für den Einzelluftdurchlass.
 - "Kurze Ausführung" mit umlaufenden Schlitzen im Korbmantel, vorzugsweise für Doppelböden mit kleiner Aufbauhöhe, ohne Drosseleinrichtung.
 - "Niedrige Ausführung" mit umlaufenden Schlitzen im Korbmantel und öffenbarem Boden, vorzugsweise für Doppelböden mit dickeren Platten und kleinerer Druckraumhöhe, optional mit Drosseleinrichtung zur beliebigen Verminderung des Zuluft-Volumenstromes für den Einzelluftdurchlass.
 - "Perforierte Blechausführung" einschließlich Drosseleinrichtung zur beliebigen Verminderung des Zuluft-Volumenstromes für den Einzelluftdurchlass.
 - "Lochblechausführung" mit Festdrossel für gleichmäßige Zuluftverteilung bei Einsatz in Versammlungsräumen bzw. kleinen Luftdurchlass-Volumenströmen.
- optional mit Spanneinsatz für den Einbau in die Durchgangsbohrung einer Bodenplatte wahlweise mit Klemmring oder Spreizkralle (ohne Spanneinsatz zum Einbau in Stufenbohrung)
- wahlweise Drallelement gegen unbefugtes Herausnehmen verriegelt.
- optional mit Anschlusskasten für den direkten Anschluss der Luftdurchlasseinheit an eine flexible Rohrleitung (ohne Anschlusskasten für Druckboden).

Luftdurchlass begehbar, befahrbar, rollstuhlfest.

Werkstoff:

- Drallelement aus Aluminium, Farbton Aluminium naturfarben ¹⁾
- Spanneinsatz aus Aluminium, Farbton Aluminium naturfarben ¹⁾
- Verteilkörbe VSD, VK und VND aus Polycarbonat, eingefärbt ähnlich RAL 9005, tiefschwarz
- Verteilkorb VPD aus Stahlblech
- Verteilkorb VL aus Polycarbonat, eingefärbt ähnlich RAL 9005, tiefschwarz, Drossel aus Stahlblech
- Anschlusskasten aus verzinktem Stahlblech

 Fabrikat:
 Krantz Komponenten

 Typ:
 DB-E A - DN 200 - _ - _ - _ - _ - _

Technische Änderungen vorbehalten.

¹⁾ Pulverbeschichtung auf Anfrage

